Stable and conservative time propagators for second order hyperbolic systems
نویسندگان
چکیده
In this paper we construct a hierarchy of arbitrary high (even) order accurate explicit time propagators for semi-discrete second order hyperbolic systems. An accurate semi-discrete problem is obtained by approximating the corresponding spatial derivatives using high order accurate finite difference operators satisfying the summation by parts rule. In order to obtain a strictly stable semi-discrete problem, boundary conditions are imposed weakly using the simultaneous approximation term method. The time discretization starts with a second order central difference scheme, then using the modified equation approach (even in the presence of a first order derivative in time) we derive arbitrary high order accurate time marching schemes. For the fully discrete problem, we introduce a suitable weighted inner product and use the energy method to derive an optimal CFL condition, which provides a useful and rigorous criterion for stability. Numerical examples are also provided.
منابع مشابه
Perfect Derivatives, Conservative Differences and Entropy Stable Computation of Hyperbolic Conservation Laws
Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability — we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28, 29] and in an ongoing series of...
متن کاملThe Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws
Discrete approximations to hyperbolic systems of conservation laws are studied. We quantify the amount of numerical viscosity present in such schemes, and relate it to their entropy stability by means of comparison. To this end, conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they can be interpre...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011